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Abstract—Mass transfer to a sphere, including the rear region, in Stokes flow and at large Péclet numbers, is
investigated. By the singular-perturbation technique, six distinct regions of different mass-transfer
mechanisms are found. One of these regions, the diffusion layer, has already been solved by the boundary-
layer method. Another area, the region at the rear of the sphere, is solved here. The local Nusselt number
at the rear stagnation point is found to be 1-192. To predict the mass transfer rate everywhere on the
sphere, a composite solution can be formed from the boundary-layer solution and the rear-region solution.

In heat- and mass-transfer problems, the method used here complements the boundary-layer methods

in predicting the heat- or mass+transfer rate at the rear of an axisymmetric object.

NOMENCLATURE

concentration of the diffusing species;
concentration at the surface;
concentration in the bulk solution;
diffusion coefficient ;

asymptotic solution for ¢®@/Y* as Y —
oo in region 5;

see equation (4);

the local Nusselt number;

2Rv /D, the Péclet number;

radial coordinate ;

dimensionless radial coordinate ;
radius of the sphere;

er*, stretched coordinate for region 6;
= §/Je = 8/e?, stretched coordinate
for region 4;

/e, stretched coordinate for regions
3and §;

= /¢, stretched coordinate for region
6;

dimensionless radial velocity;
dimensionless tangential velocity ;
velocity far from the sphere;

distance measured along the rear axis;
= r* — 1, the normal distance from
the sphere;;

Y, = y/¢, a stretched diffusion-layer co-

ordinate.
Greek symbols

r'$), = 089298, the gamma function of $;

€, = (Pe/2)™ %, perturbation parameter;

1, = Y/g(6), similarity variable for dif-
fusion layer;

0, angular coordinate, measured from
rear axis;

o, = (¢; — ¢o)/(c, — Cg), dimensionless
concentration;

g, = §./Y, similarity variable for asymp-
totic solution in region 5;

¥, stream function variable appropriate

to region 3, see equation (10).

INTRODUCTION

THE PROBLEM of mass (or heat) transfer to a
sphere in Stokes flow has been studied by many
people; for example, Levich [1], Acrivos and
Taylor [2], and Acrivos and Goddard [3].
However, the boundary-layer type of approach
used by these authors inevitably breaks down
near the rear of the sphere. Although, as pointed
out by Acrivos and Goddard, the rate of mass
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transfer at the rear contributes little to the total
mass-transfer rate, it is still physically important
in determining the true nature of the processes
involved. The method used here is of dual
significance. In one sense, it is important for
understanding the mass-transfer process of the
entire sphere. In another, more general sense, it
may be applied to correct boundary-layer
solutions of other axisymmetric bodies.

Upsiream velocity
T and concentration

FiG. 1. Regions of different mass-transfer mechanisms for
mass transfer to a sphere in Stokes flow at high Péclet
numbers.

The particular problem investigated here is
shown graphically in Fig. 1. We shall assume
throughout this paper that the velocity field
around the sphere is described by Stokes’
formula. Due to the concentration difference
between the sphere and the surrounding fluid,
mass transfer will take place. The convective
diffusion equation in spherical coordinates can
be written as

P[00  0300]_d%0 200

2" T a0 | ot T o
N 1 53_2_@_+cos()_6_(2 )
r*2\ 96* ' sin6 96 )

where Pe = 2Rv./D, the Péclet number;
r* =r/R; @ = (¢; — co)/(c, — Co); and

3 1
v¥ =(1 _QF_*—W)COSB;

3 1 .
—(1 ——m—4—r*§>81n9.

v =
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The boundary conditions for equation (1) are:

1. @=0atr*=1.

2. @=1latr* = 0.
3. 80/08 =0 at
4. 00/00 =0 at

The last two boundary conditions are necessary
due to symmetry.

0 = =, the front axis.
6 = 0, the rear axis.

REGIONS OF DIFFERENT
MASS-TRANSFER MECHANISMS

In liquid systems where the diffusion co-
efficient is small, mass transfer usually takes
place near the object. On the basis of this
concept the authors mentioned previously de-
rived the diffusion-layer equation. The solution
indicates that there are two different regions in
the mass-transfer process. One is far away from
the sphere where the concentration is uniform.
The other is very near the surface, where all the
concentration variation takes place.

However, in the present work, a more detailed
analysis is made. We find that there are four
more regions, and each has a different mass-
transfer mechanism. The first three regions
which are near the sphere are investigated here.
and the treatment of the sixth, the so-called
“far-wake” region, is relegated to the Appendix.
A sketch of regions 1-5 is shown in Fig 1.

Region 1: Region far from the sphere

In this region, the presence of the object of a
different concentration is not felt by the fluid.
and its concentration is uniform and equal to
the upstream concentration. Consequently, there
is no diffusion. Mass is simply carried along by
convection.

Region 2: The diffusion (boundary) layer

This is the region solved by the authors
mentioned, and only a brief summary shall be
given here. In this region, convection and
diffusion normal to the surface are important in
mass transfer, while diffusion tangential to the
surface is relatively unimportant.
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Since diffusion is near the surface, a new
coordinate normal to the surface is suggested;
thatis Y = (r* — 1)/e = yJ, where ¢ = (Pe/2)~}
and y = r* — 1. When equation (1) is expressed
in terms of the new variable, the dominant
terms for small € yield [2]:

00

2
3 Y?cos 9@ —3Ysin 60— o6

Y 0 -2

with the boundary conditions:

1. =0 at Y=0.
2. @=1 at Y = co.
3. 00/06 =0 at 0=m

Since the diffusion term in the O-direction,
02©/06* in equation (1), is dropped, only one
boundary condition in this direction can be
specified for equation (2), namely condition 3.

Equation (2) can be solved by a similarity
transformation. The similarity variable is de-
fined by

n = Y/g(6), 3)
where
g(6) =3*(sin20 — 0 + n)¥/sinf. (4)
The solution obtained is
(2] ——l—jex (—ndd %)
rg) P G
4
The local Nusselt number Nu is
oo 2
N =2— = ———
Wl =25 ..~ T ©

As 0 — =, the limit of g(d) is 2*, which predicts
a finite mass-transfer rate at the front. However,
as 6 — 0, g(0) tends toward infinity. This implies
an infinitely thick diffusion layer or no mass
transfer at the rear stagnation point and contra-
dicts the assumption that mass transfer occurs
close to the surface of the sphere. In addition, if
one examines the tangential gradient along the
rear axis, one will find that this gradient does
not vanish, violating boundary condition 4 of
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equation (1). Thus, it is the objective of this work
to eliminate these discrepancies.

Region 3 : Convective region

According to the boundary-layer solution, it
is apparent that the diffusion layer expands
starting from the front to the back of the sphere.
Eventually, this layer will expand sufficiently far
into the bulk such that the convective velocity
becomes large, and the approximate velocity
used in the boundary-layer equation becomes
invalid. This can be shown by substituting the
boundary-layer solution into equation (1) and
examining the behavior of the neglected terms
near § = 0:

720" [3(g° cos 0 + g%g'sin 6)
—ng*>(Ggcos0 +Lg'sinb)e+...]
= 0"+ 20 g(1 — neg + (neg)* + .. Je

cos 0
+ 2 /2@/! - @/ "o 2 12 - '
[’1 g n <gg g- + Sing 99 )]

x(1—2neg +..) (1
where the prime designates the derivative with
respect to n or .

The underlined terms, the terms of the first
order of magnitude as ¢ - 0, form the boundary-
layer equation. However, as 6§ — 0, g(6) — O(1/6),
and equation (7) has the form

LI
e 6+ ) 6 6%

with # = O(1). The left-hand side represents the
convective terms, and the right-hand side, the
diffusion terms. It is easy to see that when 6 =
O(e) all the terms in the velocity expansion are of
the same order. In other words, as 6 — O(e), the
velocity components can no longer be approxi-
mated by expansions near the surface; conse-
quently, the diffusion-layer approximation
breaks down. Acrivos and Goddard [3] have
already pointed out that this breakdown occurs
as 0 — O(¢). It is physically reasonable that the
complete Stokes velocity must be used because
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at small angles the diffusion layer becomes thick
and most of it is no longer close to the sphere.
At the same time, the above analysis suggests
that the appropriate variable for this region can
be
S = fe.

The results of substituting S into equation (1)
are

(-3, tye (3 1
2r* 23 ) or* 4r* 43
$00 ¢ (0*© 100
X o= —— ).
r* oS r*2\0S?  SaS
The diffusion terms on the right of equation (8),

being an order of magnitude smaller, can readily
be neglected, and we obtain

(,_i+; 20 (1 ERN
2,k 2r*3) or* 4r¥  4p¥3

S0

X r*as

The solution of equation (9) must match with the

asymptotic form of the boundary-layer solution
atf =0.

Equation (9) shows that in this region con-
vection is the dominant mode of mass transfer,
and diffusion is negligible. Consequently, @ is
constant along streamlines, ® = @(¥), where
from Stokes’ solution one can define a stream
function ¥ appropriate to region 3 as

(8)

0. 9

s? (1 * .2

The form of @(¥) is determined by matching
with the boundary-layer solution. For this
purpose, it is only necessary to find the asymp-
totic boundary-layer solution at 6 = 0 in terms
of the stream function. As r* — 1; that is, as r*
asymptotically approaches the boundary layer,

¥ = 0%y%/(3n)* 2. (11)
On the other hand, as § — 0, from equations (3)
and (4) we obtain

n = 0y/3n)* e. (12)
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By comparing equations (11) and (12), we find
that in the region of matching the relationship
between the similarity variable # and the stream
function ¥ is

n=.v.

Thus, the solution in region 3 is

(13)

vy
1
O(¥) = —5 | exp(— x*)dx, 14
) = 55 f p(-x)dx, (14
0
with ¥ defined by equation (10).

Region 4: The rear-axis region

The solution (14) still does not satisfy the
boundary condition 00/d8 = 0 at 8 = 0. This
can be traced to the neglect of the tangential
diffusion terms in equation (8) and indicates the
presence of still another region near the rear
axis where convection and diffusion in the 6-
direction are important, but diffusion in the
r-direction is not. At the same time @ is small,
of order €?, in this region.

Examination of the terms in equation (1) or
(8) neglected in region 3 indicates that the
thickness of region 4 is given by S = O(/e).
Hence, a suitable variable for this region is

s = S/(/e) = 6/e,

and the corresponding equation is

q 3 + 1 \d® { 3 1
K% 2r*3 ) or* TR

2
s 00 1 (a @+'1_a_@>. (15)

™ s r*2\ 352 " s Bs
The boundary conditions for equation (15) are

1 00/ds =10 at s=0.

2. ©@—-(Jo s (2r** = 3r* + yr*¥ 1B 3
n* as s— oo, in order to match with
region 3.

3. Asr — 1, ® must match with the solution
in region 5 [see equation (19)}.

Note that this region, involving the tangential
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diffusion terms, grows thicker at greater dist-
ances from the sphere. Eventually, it blends into
a sixth region, the far-wake region, where the
depletion of concentration decays, first, as 1/r*
along the rear axis and, second, it decays ex-
ponentially in r*6* in the direction normal to
the axis.

Region 5: Region near the rear of the sphere

This region is close to the surface at the rear
of the sphere. Being close to the surface, the
convective velocity is small. Thus, it is probable
that diffusion is comparable to convection. As
already shown in region 4, on approaching the
rear axis, the tangential diffusion becomes im-
portant. In addition, analogous to the diffusion-
layer concept, the normal diffusion may also be
important as the concentration change takes
place in a thin region. Order of magnitude
comparisons verify these conclusions.

Examination of the radial diffusion terms
neglected in regions 3 and 4 show that these
terms become important and the treatment of
these regions becomes invalid for y = O(e).
Consequently, the appropriate variables in
region 5 are

Y =y/e and S =0/,

and in this region equation (1) reduces for small
eto

06 00 %0 920 100
3y29Y a3y _C¢Y 0Y 100
Yy i = e T

(16)

and one sees that diffusion and convection in
both the r- and 8-directions become important.
The boundary conditions for equation (16) are

1. =0 at Y=0.

2. 00/0S =0 at $=0.

3. O-n0(n-0)=¢cYSTH (Bn)tass—
00, in order to match with the boundary-
layer solution in region 2.

4. For Y — oo, an asymptotic solution for
equation (16) is found and will be dis-
cussed in the following section.
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We have carried the analysis far enough to
show that radial diffusion is negligible in regions
3 and 4 and that therefore there can be no
upstream propagation of effects from these
regions, even though radial diffusion is not
negligible in region § itself. Thus, another way
of stating condition 4 is that the radial diffusion
term 0?°@/0Y? must become negligible com-
pared to the other terms in equation (16) as
Y — oo in order for the solution to match with
regions 3 and 4.

In this section we have proceeded logically
from one region to another, examining the
dominant modes of mass transfer in each
region and the limits of validity of the treatment
for each region, either by observing whether the
boundary conditions are satisfied or by ex-
amining the order of magnitude of terms
neglected in the equation of convective diffusion.
The fact that a limit of validity is found indicates
the existence of an adjoining region in which
different mechanisms of mass transfer are im-
portant. It is not necessary to continue this
analysis into the far wake because, as indicated
above, radial diffusion is already negligible in
regions 3 and 4 and, consequently, there can be
no upstream propagation of effects which could
affect the mass-transfer rate on the sphere.
However, for those who are interested, the far-
wake region is discussed in the Appendix.

Since region 5 is in contact with the surface,
the normal concentration gradient at the surface
will yield the rate of mass transfer in the rear
region. Thus, it is essential to obtain the solution
of equation (16). Condition 3 on equation (16)
indicates that & = O(¢) in region 5. Since y =
O(¢), the order of the Nusselt number in this
region is Nu = 0(0@/dy) = O(1), in contrast to
the front part of the sphere where Nu = O(1/e),
as indicated by equation (6).

SOLUTION FOR THE REGION AT
THE REAR OF THE SPHERE
To obtain a solution of equation (16), we
might first express the boundary condition 4 of
equation (16) more explicitly by obtaining the
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asymptotic solution of region 5 as Y — oo. For
Y - o0, at the boundary joining region 5 to
regions 3 and 4, 92@/0Y* should approach
zero in order to be consistent with equations (9)
and (15) of regions 3 and 4. Imposing this
condition on equation (16), we obtain
00 00 3’0 100
3V —3YSo =0+ cug
2oy T 0% T a7 Tsas
as Y — oo. Introduction of the similarity vari-
ables

(17)

{=8Y* and O =Yt [

reduces equation (17) to

Ef" 4+ (1 +38%4) " — 3 f/4 =0,
with the boundary conditions

1. f-¢&T% (Bn)? as &> oo, to match
with the boundary-layer solution.
2. =0 at £=0.

Equation (18) can readily be solved numerically.

To verify that the solution, @ = eY? f(¢&),
agrees with the assumption that 02°0/0Y% — 0
as Y — oo, we calculate 6°0/0Y? and 8°@/0S>
from this solution with the result

PORY  =e(—f + Ef + E2f")/aYE

(18)

and
0%@/0S* = e¢Yif".

it is obvious that the assumption is not violated.
Moreover, the function f provides the boundary
condition for region 4 when r* — 1:

O - & /(r* — 1) fs/r* — 1)]

as r* — 1 for region 4. (19)

We can solve equation (18) for f without
solving equation (16} in region 5. Thus, region 4
can be solved in connection with region 3
without knowing the solution for all of region 5.

So far, an analytic solution of equation (16)
does not seem possible; therefore, a numerical
solution is sought. The problem posed was
solved by finite-difference methods using suc-
cessive overrelaxation on a high-speed digital
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computer and with a mesh size of 0-05. The third
and fourth boundary conditions must be applied
at finite values of Y and S. At S = 3. ® was set
equal to YS plus an asymptotic correction term
valid as § — o, while at Y = 3. 8?°0/6Y? was
set equal to zero.

RESULTS AND DISCUSSION

From the calculated concentration distribu-
tion in the rear-stagnation region, one can easily
obtain the mass-transfer rate along the surface
by calculating the normal gradient at the
surface. The results are shown in Fig 2, where
Nu, is the local Nusselt number and the sub-
script r denotes the solution for the rear region.

2
Results from
region 5

Nu,

A
T / \Diffugion—luyer
solution

FIG. 2. Local Nusselt number in the region near the rear of
the sphere.

Also shown in Fig. 2 is the local Nusselt number
Nuy, predicted by the boundary-layer solution.
It is clear, as one would expect, that there is a
large difference at small angles, and yet the
solution for region 5 blends into the boundary-
layer solution at larger angles.

At the rear stagnation point, S = 0, the local
Nusselt number is Nu, = 1:192, This is less than
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the Nusselt number (Nu = 2) for the diffusion
from a sphere into a stagnant medium. The
reason, obviously, is that the convection of
depleted solution into the rear region decreases
the concentration gradient at the rear.

In order to obtain the mass-transfer rate for
the entire sphere, it is necessary to form a
composite solution, with the boundary-layer
solution as the outer solution and the solution
for the rear region as the inner solution. Mathe-
matically, the composite solution for the local
Nusselt number can be written as

Nu(6) = Nu,(60) + Nu,(S) — 20/eT'¢) (3n)*.
(20)

where the subscript bl denotes the boundary-
layer solution. The last term is the inner limit of
the boundary-layer solution, which is the same
as the outer limit of the solution for region 5.

Acrivos and Goddard have obtained the
asymptotic average Nusselt number for Pe —
o0, and Re — 0, as

Nu = Pe* [09914 + 0922 Pe™* + O(Re)

+0(Pe Y], (1)

and they also have suggested that the contribu-
tion of the rear stagnation region to Nu is
O(Pe™ %), although it actually is of the order
Pe™* Therefore, if one wants to include the
contribution to Nu of the rear stagnation
region, one should also carry out two more
higher order approximations in Acrivos and
Goddard’s analysis for the diffusion layer.

Even though the contribution of the rear of
the sphere to the average Nusselt number is
very small the solution in this region is of
interest because it can elucidate one example of
the failure of boundary-layer methods at the
rear of a bluff object. The solution found here
for the rear of a sphere in Stokes flow would
also be applicable to other problems at high
Péclet numbers, first to the sphere at higher
Reynolds numbers where Stokes’ velocity profile
is not applicable and secondly to other axi-
symmetric bodies in the absence of eddies
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behind the bodies, as long as the rear of the body
is blunt like the sphere and not pointed. The
rear region is very small, and in this region the
velocity profile for such an axisymmetric body
can be expressed as

v,=by* and v, = —bry,

where b is a constant and r denotes the normal
distance from the axis of symmetry. In addition
one needs the asymptotic form of the mass-
transfer rate at the rear of the object as predicted
from the diffusion layer on the forward part of
the object. Then, by appropriate stretching of
the coordinates and concentration, the problem
can be reduced to equation (16) and the following
boundary conditions, for which the solution has
already been given.

ACKNOWLEDGEMENT

This work was supported by the United States Atomic
Energy Commission.

REFERENCES

1. V. G. LevicH, Physicochemical Hydrodynamics, Section
14. Prentice-Hall, Englewood Cliffs, N.J. (1962).

2. A. Acrivos and T. D. TAYLOR, Heat and mass transfer
from single spheres in Stokes flow, Physics Fluids 5, 387—
394 (1962).

3. A. Acrivos and J. D. GODDARD, Asymptotic expansions
for laminar forced-convection heat and mass transfer.
Part 1. Low speed flows, J. Fluid Mech. 23, 273-291
(1965).

APPENDIX
The Far-Wake Region

The asymptotic solution for region 4 as
r* > oo is

0 - J(er)f [sy2r3)], 22)

which, we might note, is very similar to the
asymptotic solution in the same region asr* — 1
[see equation (19)]. The treatment of region 4
ceases to be valid when ©® = O(1), which occurs
when r* = O(1/¢). This then defines a sixth
region, that of the far wake. In this region, the
appropriate variables are

R=e* and & =0/
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and equation (1) reduces to

0_z0 1 (%6 100) .
0R RS R\oF? S oS

with the boundary conditions

L
2.

& —-1ass — 0.
0@/0F =0at ¥ =0.
B

1
@—»W%)‘!‘exp(—xﬂdx

SR
+ (YR [ J2R3)] - ngz

This last boundary condition comes from match-
ing with both region 3 and region 4 and rep-
resents the composite expansion for these two
regions as r* —» c0.

The asymptotic solution in region 6 as
A - w01

O =1—(K/R) exp(—RS*/4). (24)

where the constant K is related to the total rate
of mass transfer to the sphere:

K = Nu/(4Pe)* ~ 0:6245.

Thus, although detailed solutions have not
been obtained for regions 4 and 6, one does arrive
at a reasonably complete picture of the con-
centration distribution in the entire flow field to

as # — 0, where B= SR(,/2)/3% n*. the first approximation as Pe — 0.

Résumé—On étudie le transport de masse sur une sphére, y compris la région arriére, avec un écoulement
de Stokes et des nombres de Péclet élevés. On trouve, par la technique de la perturbation singuliére, six
régions distinctes avec des mécanismes différents de transport de masse. L’une de ces régions, la couche
de diffusion, a déja été résolue par la méthode de la couche limite. On a donné ici la solution pour une
autre région, ¢’est-d-dire celle a I'arriére de la sphére. On trouve que le nombre de Nusselt local au point
d’arrét aval est 1,192, Afin de prévoir la vitesse de transport de masse en chaque point de la sphére, on
peut former une solution mixte  partir des solutions de la couche limite et de la région arriére.

Dans les problémes de transport de chaleur et de masse, la méthode employée ici compleéte les méthodes
de la couche limite pour prévoir les vitesses de transport de chaleur et de masse a I'arriére d'un objet &

symétrie de révolution.

Zusammenfassung—Ex wurde der Stoffiibergang an einer Kugel, einschliesslich des riickwirtigen Bereiches
in der Stokes-Stromung und bei grossen Péclet-Zahlen untersucht. Nach der Technik der Singular-
Strémung wurden sechs verschiedene Bereiche mit unterschiedlichem Stofftransport gefunden. Fiir einen
dieser Bereiche, die Diffusionsschicht, liessen sich bereits Lésungen nach der Grenzschichtmethode
angeben. Fiir cinen anderen Bereich, den riickwirtigen Teil eciner Kugel, werden Losungen hier gegeben.
Dir drtliche Nusselt-Zahl am riickwirtigen Staupunkt ergab sich zu 1,192, Zur Bestimmung des Stoff
transportes iiberall an der Kugel kann eine zusammengesetzte Losung aus der Grenzschichtidsung und
der Losung fiir den riickwirtigen Bereich gebildet werden. In Wirme- und Stoffiibergangsproblemen
erginzt die hier verwendete Methode die Grenzschichtmethoden bei der Bestimmung transportierter
Wirme oder Masse im riickwirtigen Bereich eines achssymmetrischen Kérpers.

AnBotanun-—Mcenenosan Maccoo0MeH mIapa, BKIIIOYAA €ré KOPMOBYIO CTEHKY, npu olTexa-
HUM CTOKCOBHIM HOTOKOM HpH Soabumux uyucaax Ilewne. Merogom Teopuu BosMymenuit Guio
06HAPYIKEHO 1IECTh YYACTKOB C PABJIMYHLIM MeXaHuaMoM maccoOmena. Peienne nas ogHoro
M3 3TMX YYACTKOB (Mu{Py3sMOHHOTO CIIOA) MOJIyueHO paHee MeTOJ0M NOrPAaHMYHOro ciod, B
nanHo# palore HalieHo pelmenve 1A 3agHedt crerkd. OOHAPYM{EHO, YTO JOKAJNBHOE YHCIIO
Hyccemsra BGausu sapuedt wputiyeckolt Touku pasHo 1,192. Ilnn mATeHCHBHOCTH Macco-
o6MeHa 1o BCeMy HIapy OBUIO HOJIYYEHO CIIOHKHOE PeilleHHe HA OCHOBE PelIeHHs NOTPAHHIHOrO
€08 u pemienus RaA sajHelt crenxu. IIpuMeneHHHIl 3[iech METOl MOMKET CAYHHTH JONON-
HEHHEM K MeTOHMKEe NOrPAHMYHOTO CHOA NpPM pacyeTe TEmyio-um Maccoobmena Ha sapued
CTOPOHE OCeCHMMETPUYHOTC TeJa.



