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Abstract-Mass transfer to a sphere, including the rear region, in Stokes flow and at large P&let numbers, is 
investigated. By the singular-perturbation technique, six distinct regions of different mass-transfer 
mechanisms are found. One of these regions, the diffusion layer, has already been solved by the boundary- 
layer method. Another area, the region at the rear of the sphere, is solved here. The local Nusselt number 
at the rear stagnation point is found to be 1.192. To predict the mass transfer rate everywhere on the 
sphere, a composite solution can be formed from the boundary-layer solution and the rear-region solution. 

In heat- and mass-transfer problems, the method used here complements the boundary-layer methods 
in predicting the heat- or mass-transfer rate at the rear of an axisymmetric object. 

NOMENCLATURE 

concentration of the diffusing species ; 
concentration at the surface ; 
concentration in the bulk solution; 
diffusion coefficient ; 
asymptotic solution for LB/Y+ as Y + 
co in region 5 ; 
see equation (4) ; 
the local Nusselt number ; 
2Rv,/D, the P&let number; 
radial coordinate ; 
dimensionless radial coordinate; 
radius of the sphere ; 
LI*, stretched coordinate for region 6; 
= s/ JL = e/c*, stretched coordinate 
for region 4 ; 
t?/tq stretched coordinate for regions 
3and5; 
= 8/c2, stretched coordinate for region 

6; 
dimensionless radial velocity ; 
dimensionless tangential velocity ; 
velocity far from the sphere ; 
distance measured along the rear axis ; 
= r* - 1, the normal distance from 
the sphere ; 

Y, = Y/C, a stretched diffusion-layer co- 
ordinate. 

Greek symbols 
= 0.89298, the gamma function of 4; 
= (Pe/2)- *, perturbation parameter ; 
= Y/g(B), similarity variable for dif- 
fusion layer ; 
angular coordinate, measured from 
rear axis ; 
= (Ci - qJ/(c, - co), dimensionless 
concentration ; 
= S ,/ Y, similarity variable for asymp- 
totic solution in region 5 ; 
stream function variable appropriate 
to region 3, see equation (10). 

MTRODUCI’ION 

THE PROBLEM of mass (or heat) transfer to a 
sphere in Stokes flow has been studied by many 
people ; for example, Levich [l], Acrivos and 
Taylor [2], and Acrivos and Goddard [3]. 
However, the boundary-layer type of approach 
used by these authors inevitably breaks down 
near the rear of the sphere. Although as pointed 
out by Acrivos and Goddard the rate of mass 
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transfer at the rear contributes little to the total 
mass-transfer rate, it is still physically important 
in determining the true nature of the processes 
involved. The method used here is of dual 
significance. In one sense, it is important for 
understanding the mass-transfer process of the 
entire sphere. In another, more general sense, it 
may be applied to correct boundary-layer 
solutions of other axisymmetric bodies. 

“, Upstream velocity 
- ond concentration cm 

FIG. 1. Regions of different mass-transfer mechanisms for 
mass transfer to a sphere in Stokes flow at high Ptclet 

numbers. 

The particular problem investigated here is 
shown graphically in Fig. 1. We shall assume 
throughout this paper that the velocity field 
around the sphere is described by Stokes’ 
formula. Due to the concentration difference 
between the sphere and the surrounding fluid, 
mass transfer will take place. The convective 
diffusion equation in spherical coordinates can 
be written as 

Pe ao ~gao 
- v:&G+;“z 

[ 1 a20 2 ao 

2 =ar*2+r*ar* 

1 
+- ---tf---- 

( 

a20 cos eao 

re2 a82 sine ae ) ’ 
(1) 

where Pe = 2Rv,/D, the P&let number; 
r* = r/R; 8 = (ci - c,,)/(c, - c,); and 

u,*= ( 3 1 
l-g+p) c0s 8; 

vg=- 3 1 ( l___-- 
4r* 4r*3 > 

sin 8. 

The boundary conditions for equation (1) are : 

1. 0 = Oatr* = 1. 
2. 0 = 1 at r* = co. 
3. aolae=o at tI = rr, the front axis. 
4. aolae = 0 at 8 = 0, the rear axis. 

The last two boundary conditions are necessary 
due to symmetry. 

REGIONS OF DIFFERENT 

MASS-TRANSFER MECHANISMS 

In liquid systems where the diffusion co- 
efficient is small, mass transfer usually takes 
place near the object. On the basis of this 
concept the authors mentioned previously de- 
rived the diffusion-layer equation. The solution 
indicates that there are two different regions in 
the mass-transfer process. One is far away from 
the sphere where the concentration is uniform. 
The other is very near the surface, where all the 
concentration variation takes place. 

However, in the present work, a more detailed 
analysis is made. We find that there are four 
more regions, and each has a different mass- 
transfer mechanism. The first three regions 
which are near the sphere are investigated here. 
and the treatment of the sixth, the so-called 
“far-wake” region, is relegated to the Appendix. 
A sketch of regions l-5 is shown in Fig. 1. 

Region 1: Region far from the sphere 
In this region, the presence of the object of a 

different concentration is not felt by the fluid. 
and its concentration is uniform and equal to 
the upstream concentration. Consequently, there 
is no diffusion, Mass is simply carried along by 
convection. 

Region 2: The dgfusion (boundary) layer 
This is the region solved by the authors 

mentioned, and only a brief summary shall be 
given here. In this region, convection and 
diffusion normal to the surface are important in 
mass transfer, while diffusion tangential to the 
surface is relatively unimportant. 



MASS TRANSFER 

Since diffusion is near the surface, a new 
coordinate normal to the surface is suggested ; 
that is Y = (r* - 1)/c = y/c, where 6 = (Pe/2)- * 
and y = I* - 1. When equation (1) is expressed 
in terms of the new variable, the dominant 
terms for small E yield [2] : 

ao 
$ Y’cosg--$Ysing- = 2 

8Y 
z ;2y” (2) 

with the boundary conditions : 

1. o=o at Y = 0. 
2. O=l at Y=co. 
3. aojae = 0 at 8 = 7r. 

Since the diffusion term in the g-direction, 
a20/ag2 in equation (l), is dropped only one 
boundary condition in this direction can be 
specified for equation (2), namely condition 3. 

Equation (2) can be solved by a similarity 
transformation. The similarity variable is de- 
lined by 

where 

? = Y/g@), 

g(g) = 3+ (4 sin 28 - 8 + n)+/sin 0. 

The solution obtained is 

0 

The local Nusselt number Nu is 

N&,(B) = 22 
2 

#.I= I= CI-(3, g(0) 

(3) 

(4) 

(5) 

(6) 

As 0 + rc, the limit of g(g) is 2*, which predicts 
a finite mass-transfer rate at the front. However, 
as 8 -+ 0, g(g) tends toward infinity. This implies 
an infinitely thick diffusion layer or no mass 
transfer at the rear stagnation point and contra- 
dicts the assumption that mass transfer occurs 
close to the surface of the sphere. In addition, if 
one examines the tangential gradient along the 
rear axis, one will find that this gradient does 
not vanish, violating boundary condition 4 of 
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equation (1). Thus, it is the objective of this work 
to eliminate these discrepancies. 

Region 3 : Convective region 
According to the boundary-layer solution, it 

is apparent that the diffusion layer expands 
starting from the front to the back of the sphere. 
Eventually, this layer will expand sufficiently far 
into the bulk such that the convective velocity 
becomes large, and the approximate velocity 
used in the boundary-layer equation becomes 
invalid. This can be shown by substituting the 
boundary-layer solution into equation (1) and 
examining the behavior of the neglected terms 
near 8 = 0: 

~~0’ [$ (g3 cos 8 + g2g’sin 0) 

- qg3(igcos8 + ag’sinfI)E + . ..I 

= 0” + 20’ g(l - 969 + (qeg)2 + . . .)E 

+ ?.yg’2@” 

[ 
- t@’ ( cos 8 

gg” - 2g’2 + Y--&g49 
)I 

x (1 - 2169 + . . . )2, (7) 

where the prime designates the derivative with 
respect to r~ or 8. 

The underlined terms, the terms of the first 
order of magnitude as e + 0, form the boundary- 
layer equation. However, as 8 + 0, g(g) + O( l/g), 
and equation (7) has the form 

( 

1 E C t2 --- 
g3 e4 

+... =l+;+# 
> 

with q = O(1). The left-hand side represents the 
convective terms, and the right-hand side, the 
diffusion terms, It is easy to see that when 8 = 
O(C) all the terms in the velocity expansion are of 
the same order. In other words, as 8 3 O(C), the 
velocity components can no longer be approxi- 
mated by expansions near the surface; conse- 
quently, the diffusion-layer approximation 
breaks down. Acrivos and Goddard [3] have 
already pointed out that this breakdown occurs 
as 8 + O(C). It is physically reasonable that the 
complete Stokes velocity must be used because 
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at small angles the diffusion layer becomes thick 
and most of it is no longer close to the sphere. 

At the same time, the above analysis suggests 
that the appropriate variable for this region can 
be 

s = 016. 

The results of substituting S into equation (1) 
are 

The diffusion terms on the right of equation (8) 
being an order of magnitude smaller, can readily 
be neglected, and we obtain 

( 1 ao ‘-&+v p- 
> ( 

l-4$& 
> 

The solution of equation (9) must match with the 
asymptotic form of the boundary-layer solution 
at e = 0. 

The solution (14) still does not satisfy the 
boundary condition a@/&3 = 0 at 8 = 0. This 
can be traced to the neglect of the tangential 
diffusion terms in equation (8) and indicates the 
presence of still another region near the rear 
axis where convection and diffusion in the 8- 
direction are important, but diffusion in the 
r-direction is not. At the same time 0 is small, 
of order c*, in this region. 

Equation (9) shows that in this region con- 
vection is the dominant mode of mass transfer, 
and diffusion is negligible. Consequently, 8 is 
constant along streamlines, 8 = e(Y), where 
from Stokes’ solution one can define a stream 
function Y appropriate to region 3 as 

Examination of the terms in equation (1) or 
(8) neglected in region 3 indicates that the 
thickness of region 4 is given by S = O( JE). 
Hence, a suitable variable for this region is 

s = s/( Jc) = ep, 
and the corresponding equation is 

Y = j-& 
( 
i - 3r* + 2r*2 

> 

1 
. (10) ( 

l-G+- 
> ( 

ao- f-3-1 
2r*3 &* 49 4r*3 > 

By comparing equations (11) and (12) we find 
that in the region of matching the relationship 
between the similarity variable q and the stream 
function Y is 

q= JYJ. 
Thus, the solution in region 3 is 

(13) 

JS 

@(y) = -!- 
W s 

exp ( - x3) dx, (14) 

0 

with Y defined by equation (10). 

Region 4 : The rear-axis region 

The form of @(!P) is determined by matching 
with the boundary-layer solution. For this 
purpose, it is only necessary to find the asymp- 
totic boundary-layer solution at 8 = 0 in terms 
of the stream function. As r* --+ 1; that is, as r* 
asymptotically approaches the boundary layer, 

Y = ezy2/(3# ~2. (11) 

On the other hand, as 0 + 0, from equations (3) 
and (4) we obtain 

V = ey/(3rr)* c. (12) 

The boundary conditions for equation (15) are 

I a8/as = 0 at s = 0. 
2. Q -+ ( JL) s (2r*2 - 3r* + Ijr*)+r($) 3” 

n* as s + co, in order to match with 
region 3. 

3. As r + 1, 8 must match with the solution 
in region 5 [see equation (19)]. 

Note that this region, involving the tangential 
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diffusion terms, grows thicker at greater dist- 
ances from the sphere. Eventually, it blends into 
a sixth region, the far-wake region, where the 
depletion of concentration decays, first, as l/r* 
along the rear axis and, second it decays ex- 
ponentially in r*@ in the direction normal to 
the axis. 

Region 5 : Region near the rear of the sphere 
This region is close to the surface at the rear 

of the sphere. Being close to the surface, the 
convective velocity is small. Thus, it is probable 
that diffusion is comparable to convection As 
already shown in region 4, on approaching the 
rear axis, the tangential diffusion becomes im- 
portant. In addition, analogous to the diffusion- 
layer concept, the normal diffusion may also be 
important as the concentration change takes 
place in a thin region. Order of magnitude 
comparisons verify these conclusions. 

Examination of the radial diffusion terms 
neglected in regions 3 and 4 show that these 
terms become important and the treatment of 
these regions becomes invalid for y = O(t). 
Consequently, the appropriate variables in 
region 5 are 

Y = y/c and s = e/c, 

and in this region equation (1) reduces for small 
lz to 

a0 
tp---3 

a0 a20 a20 I a0 

ay 2ys~=dy2+~+s~ 

(16) 
and one sees that diffusion and convection in 
both the r- and &directions become important. 
The boundary conditions for equation (16) are 

1. 0=0 at Y = 0. 
2. aejas = 0 at S = 0. 
3. 0 + qS’(q + 0) = cYS/l-($) (37q as s + 

00, in order to match with the boundary- 
layer solution in region 2. 

4. For Y + co, an asymptotic solution for 
equation (16) is found and will be dis- 
cussed in the following section. 

We have carried the analysis far enough to 
show that radial diffusion is negligible in regions 
3 and 4 and that therefore there can be no 
upstream propagation of effects from these 
regions, even though radial diffusion is not 
negligible in region 5 itself. Thus, another way 
of stating condition 4 is that the radial diffusion 
term a20/aY2 must become negligible com- 
pared to the other terms in equation (16) as 
Y + cc in order for the solution to match with 
regions 3 and 4. 

In this section we have proceeded logically 
from one region to another, examining the 
dominant modes of mass transfer in each 
region and the limits of validity of the treatment 
for each region, either by observing whether the 
boundary conditions are satisfied or by ex- 
amining the order of magnitude of terms 
neglected in the equation of convective diffusion. 
The fact that a limit of validity is found indicates 
the existence of an adjoining region in which 
different mechanisms of mass transfer are im- 
portant. It is not necessary to continue this 
analysis into the far wake because, as indicated 
above, radial diffusion is already negligible in 
regions 3 and 4 and, consequently, there can be 
no upstream propagation of effects which could 
affect the mass-transfer rate on the sphere. 
However, for those who are interested, the far- 
wake region is discussed in the Appendix. 

Since region 5 is in contact with the surface, 
the normal concentration gradient at the surface 
will yield the rate of mass transfer in the rear 
region. Thus, it is essential to obtain the solution 
of equation (16). Condition 3 on equation (16) 
indicates that 0 = O(t) in region 5. Since y = 
O(E), the order of the Nusselt number in this 
region is Nu = o(aO/ay) = O(l), in contrast to 
the front part of the sphere where Nu = 0(1/c), 
as indicated by equation (6). 

SOLUTION FOR THE REGION AT 

THE REAR OF THE SPHERE 

To obtain a solution of equation (16), we 
might first express the boundary condition 4 of 
equation (16) more explicitly by obtaining the 
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asymptotic solution of region 5 as Y -+ co. For computer and with a mesh size of 0.05. The third 
Y + co, at the boundary joining region 5 to and fourth boundary conditions must be applied 
regions 3 and 4, a20/aY2 should approach at finite values of Y and S. At S = 3, 0 was set 
zero in order to be consistent with equations (9) equal to YS plus an asymptotic correction term 
and (15) of regions 3 and 4. Imposing this valid as S -+ m, while at Y = 3. a”@laY” was 
condition on equation (16) we obtain set equal to zero. 

jy20 
2 ay 

(17) RESULTS AND DISCUSSION 

From the calculated concentration distribu- 

as Y + ix). Introduction of the similarity vari- tion in the rear-stagnation region, one can easily 

ables obtain the mass-transfer rate along the surface 

[ = sY+ and 0 = cY4 f(i) 
by calculating the normal gradient at the 
surface. The results are shown in Fig. 2, where 

reduces equation (17) to Nu, is the local Nusselt number and the sub- 

[f” + (1 + 3r2/4)f’ - 35fl4 = 0, (18) 
script Y denotes the solution for the rear region. 

with the boundary conditions 

1. f + t/I($) (37r)* as 5 + co, to match 
with the boundary-layer solution. 

2. f’ = 0 at 5 = 0. 

Equation (18) can readily be solved numerically. 
To verify that the solution. 0 = cY* f(t), 

agrees with the assumption that a’O/aY2 -+ 0 
as Y -, CO, we calculate a201dY2 and a20/aS2 
from this solution with the result 

a20/aY2 = C( - f + <f’ + 52f”)/4r+ 

and 

It is obvious that the assumption is not violated. 
Moreover, the function S provides the boundary 
condition for region 4 when I* -+ 1: 

a20/as2 = tr+f”. 

0 + dJ(r* - l)f[sJ(r* - 111 

as r* -+ 1 for region 4. (19) 

We can solve equation (18) for f without 
solving equation (16) in region 5. Thus, region 4 
can be solved in connection with region 3 
without knowing the solution for all of region 5. 

So far, an analytic solution of equation (16) 
does not seem possible ; therefore, a numerical 
solution is sought. The problem posed was 
solved by finite-difference methods using SUC- 

cessive overrelaxation on a high-speed digital 

FIG. 2. Local Nusselt number in the region near the rear of 
the sphere. 

Also shown in Fig. 2 is the local Nusselt number 
Nu,, predicted by the boundary-layer solution. 
It is clear, as one would expect, that there is a 
large difference at small angles, and yet the 
solution for region 5 blends into the boundary- 
layer solution at larger angles. 

At the rear stagnation point, S = 0, the local 
Nusselt number is Nu, = 1.192. This is less than 
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the Nusselt number (Nu = 2) for the diffusion behind the bodies, as long as the rear of the body 
from a sphere into a stagnant medium. The is blunt like the sphere and not pointed. The 
reason, obviously, is that the convection of rear region is very small, and in this region the 
depleted solution into the rear region decreases velocity profile for such an axisymmetric body 
the concentration gradient at the rear. can be expressed as 

In order to obtain the mass-transfer rate for 
the entire sphere, it is necessary to form a 
composite solution, with the boundary-layer 
solution as the outer solution and the solution 
for the rear region as the inner solution. Mathe- 
matically, the composite solution for the local 
Nusselt number can be written as 

Nu(8) = N&[(B) + Nu,(S) - 2e/tr($)(3z)? 

(20) 

where the subscript bl denotes the boundary- 
layer solution. The last term is the inner limit of 
the boundary-layer solution, which is the same 
as the outer limit of the solution for region 5. 

v, = by2 and v, = - bry, 

where b is a constant and r denotes the normal 
distance from the axis of symmetry. In addition 
one needs the asymptotic form of the mass- 
transfer rate at the rear of the object as predicted 
from the diffusion layer on the forward part of 
the object. Then, by appropriate stretching of 
the coordinates and concentration, the problem 
can be reduced to equation (16) and the following 
boundary conditions, for which the solution has 
already been given. 

Acrivos and Goddard have obtained the 
asymptotic average Nusselt number for Pe + 
00, and Re + 0, as 
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APPENDIX 

Even though the contribution of the rear of 
the sphere to the average Nusselt number is 
very small. the solution in this region is of 
interest because it can elucidate one example of 
the failure of boundary-layer methods at the 
rear of a bluff object. The solution found here 
for the rear of a sphere in Stokes flow would 
also be applicable to other problems at high 
P&let numbers, first to the sphere at higher 
Reynolds numbers where Stokes’ velocity profile 
is not applicable and secondly to other axi- 
symmetric bodies in the absence of eddies 

The Far- Wake Region 

The asymptotic solution for region 4 as 
r* + co is 

@ + &*)f[sJ(2r*/31, (22) 
which, we might note, is very similar to the 
asymptotic solution in the same region as r* + 1 
[see equation (19)]. The treatment of region 4 
ceases to be valid when 0 = O(l), which occurs 
when r* = 0(1/c). This then defines a sixth 
region, that of the far wake. In this region, the 
appropriate variables are 

R = u* and Y = e/62, 
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and equation (1) reduces to This last boundary condition comes from match- 
ing with both region 3 and region 4 and rep- 

resents the composite expansion for these two 
regions as r* 3 co. 

The asymptotic solution in region 6 as 

with the boundary conditions 
5?-+-,is 

1. O-tlasY--+~. 
0 = 1 - (K/9?) exp ( -&.P/4), (24) 

2. ~~~~~ = 0 at 9 = 0. where the constant K is related to the total rate 

B of mass transfer to the sphere: 

3. O+L exp(-x3)dx 
W8 I 

K = =/(4Pe)* x 0.6245. 

0 

9g,/($) 
Thus, although detailed solutions have not 

+ (~~)~~~~(2~/3)~ - r(4) (3& 
been obtained for regions 4 and 6, one does arrive 

3 at a reasonably complete picture of the eon- 
centration distribution in the entire flow field to 

as 9 + 0, where B = 9’~%(,/2)/3~ I-C*. the first approximation as Pe -+ m. 

R&u&---On Ctudie le transport de masse sur une sphere, y compris la rtgion arrikre, avec un txoulemenl 
de Stokes et des nombres de P&let BlevCs. On trouve, par la technique de la perturbation singulike, six 
r&ions distinctes avec des m&canismes diff&ents de transport de masse. L’une de ces rkgions, la couche 
de diffusion, a d&j& tt& r&solue par la m&hode de la couche limite. On a donn& ici la solution pour une 
autre &ion, c’est-&dire celle & i’arritre de la sph&re. On trouve que le nombre de Nusselt local au point 
d’arr&t aval est 1,192. Atin de pr&oir la vitesse de transport de masse en chaque point de la sphbre, on 
peut former une solution mixte B partir des solutions de la couche limite et de la rtgion arri&e. 

Dans les problemes de transport de chaleur et de masse, la mithode employ&e ici compltte les mtthodes 
de la couche limite pour prevoir les vitesses de transport de chaleur et de masse B I’arrikre d’un objet g 

symktrie de r&olution. 

Zusammenfmg-Ex wurde der Stoffiibergang an einer Kugel, einschliesslich des riickwartigen Bereiches 
in der Stokes-StrGmung und bei grossen P&let-Zahlen untersucht. Nach der Technik der Singular- 
Strijmung wurden sechs verschiedene Bereiche mit unterschiedlichem Stofftransport gefunden. Fiir einen 
dieser Bereiche, die Diffusionsschicht, liessen sich bereits Liisungen nach der Grenzschichtmethode 
angeben. Fiir einen anderen Bereich, den riickwiirtigen Teil einer I&gel, w&den LSsungen hier gegeben. 
Dir iirtliche Nusselt-Zahl am riickwlrtigen Staupunkt ergab sich zu 1,192. Zur Restimmung des Staff 
transportes iiberall an der Kugel kann eine zusammengesetzte Liisung aus der GrenzschichtlGsung und 
der Liisung fi.ir den riickwgrtigen Bereich gebildet werden. In W&me- und Stoffiibergangsproblemen 
erglnzt die hier verwendete Methode die Grenzschichtmethoden bei der Bestimmung transportierter 

W&me oder Masse im riickwiirtigen Bereich eines achssymmetrischen K&per% 

AEEoTa~~-~cc~e~oBaK n3accooBmeH mapa,BKmoraR ero ~0pM0ByI0 cTeHKy, nprz 06TeKa- 

HHH CTOHCOB~IM nOTOKOM npH60nbmsx WlCJtaX ReKJle. MeTo~om TeOpMki BOaMyUleHMfi 6nno 
o6napyHteHo IUeCTb y=iaCTKOB C pE48JlWlHbIM MeXaHM3MOM MaCCO6MeHa. PeLlleHEle AJIft OAHOrO 

113 3TllX y'-IaCTKOB (~W.$~yBAOHHOrO CJIOH)IIOJIyYeHO PaHee MeTOnOM IIOrpaHHsHOrO CJIOJi. B 
RaHHOti pa6oTe Hat&eHO peuxeHIle AJIH 3aAHefi CTeHKB. 06HapyNeH0, 'IT0 JrOKanbHOe wcno 

HyCCeJIbTa B6naaM 3aAHefi KpHTHYeCKOi TOYKH pilBH0 1,192. fiJII% IlHTeHCPBHOCTK MBCCO- 

06MeHa noBce~ymnpy6~~0 ~O~y~eHOc~olrtHoepelueHueHaocHoBepe~eHr?KuorpaHri~Horo 

CZOR I4 pe~e~iU~ JtJlfl 3aRHeCt CTeHKE. ~p~MeHeHH~~ 3ReCb ?deTOR MOmeT CJlyiKHTb AOuOJI- 

HexHeM K nieTowKe norpaarrwioro Cnoii npEi pacseTe Tenno-u MaCCOO6MeHa Ha aaAHei4 
cTopone ocewMMeTpuvKor0 Tena. 


